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Second Quantization in a Waveguide with Variable 
Cross Section 
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Received July 27, 1995 

The motion of a system consisting of noninteracting bosons in a waveguide with 
variable cross section is studied. These particles have transverse as well as 
longitudinal degrees of freedom, but only a finite number of transverse modes 
can propagate in the waveguide. While for a waveguide with constant cross 
section, the numbers of particles in a given state of longitudinal and transverse 
modes remain constant, in the case of a waveguide with variable cross section 
there is conversion between these modes, although the total number of particles 
is conserved. By considering the equations of motion for the annihilation (or 
creation) operator, it is shown that the boundaries act as an external force, and 
thus generate localized transverse modes in the waveguide. 

1. INTRODUCTION 

When a stream of bosons or fermions flows along a pipe or a tube (here 
called a waveguide) then the boundaries impose additional forces (forces of 
constraint) (van Kampen, 1984) on the motion of these particles. For static 
boundaries and for a specific geometry where the Schrrdinger equation is 
separable and solvable, one observes that these forces are responsible for a 
shift in the phase of the incident wave when there is a constriction along the 
direction of the flow of the particles (Levy-Leblond, 1987; Razavy, 1989) 
and that the effective force is nonlocal (Razavy, 1989). On the other hand, 
if the cross section of the waveguide changes with time, the energies of the 
particles are directly affected by the motion of the walls (Razavy, 1993, 
1994). The geometrical change in the boundaries also creates localized or 
propagating modes that are not present in the incoming beam of the particles. 
The study of this aspect of the change of the boundary in the case of a long 
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waveguide is the subject of the present work. Here the formalism of the 
second quantization is applied to study the motion of these particles. There 
are a number of very interesting physical systems where the present formula- 
tion can be applied. For instance, the theory of quantum conduction through 
a constriction (Szafer and Stone, 1989) and two-dimensional quantum wires 
(Wu et al., 1992, and references therein) are just two examples of such 
systems. 

In Section 2, we start with the Hamiltonian operator, and write it in 
terms of creation and annihilation operators. These operators depend on two 
transverse and one longitudinal quantum numbers. The first two are discrete 
and bounded and are connected to the finite cross section of the waveguide 
and the energy of the incoming particles, and the third, the longitudinal 
mode, is associated with the translational motion of the particles along the 
waveguide. We also assume that the waveguide extends from z = - ~  to z 
= +m and is symmetric about z = 0. This last requirement is not essential 
for the present formulation, but it simplifies the calculation. In Section 3, 
we find the equation of motion for the creation and annihilation operators 
and show that while the total number of  particles is conserved, the number 
of particles with a given transverse or longitudinal quantum number does 
not remain constant in the course of motion. We also obtain the integral 
equation for the single-particle wavefunction in momentum space, which 
shows the coupling between the transverse and longitudinal modes. By solving 
this integral equation approximately we show that if there is a gradual increase 
in the cross section followed by a gradual decrease, then there will be localized 
modes appearing around the point where the cross section is maximum; this 
is similar to the result obtained for acoustic waveguides. 

2. T H E  HAMILTONIAN OPERATOR 

Let us consider a waveguide bounded by the planes x = - 1, x = 1, y 
= 0, and y = L(z), with particles satisfying Bose statistics entering the 
waveguide from z = -oo and leaving at z = oo. We assume that L(z) is an 
even function of z, and that asymptotically it tends to a well-defined nonzero 
value L,, i.e., 

lim L(z) --~ La as I zl --4 ~ (2.1) 

The Hamiltonian for this system is given by (h = 1) 

H = (I/2M) dz dy dx (VqJ*). (Vq0 (2.2) 
-10 1 

where M is the mass of each particle. The operators ~* and ~ must vanish 
at the boundaries; therefore we can expand both in terms of Fourier series, 
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~(x, y, z, t ) =  [l/'rrL(z)]Uzf~= eipZdP .=o ~] ,,,=o ~ a.m(p, t) 

X {sin[n~ry/L(z)] cos[(m + 1/2)wx]} (2.3) 

II~*(x, y, Z, t) = [l/~rL(z)]'/2 I~ ~ eiqZdq ~ ~ aj,(q, t) 
j=o t=o 

× {sin[jTry/L(z)] c os [ ( /+  1/2)rrx] } (2.4) 

In these equations aj~i(q, t) and a.m(k, t) are creation and annihilation operators. 
They satisfy the equal-time commutation relations 

[a.m(p, t), a~(q, t)] = B.j~,.t~(p - q) (2.5) 

and 

[a*.,(p, t), aj~i(q, t)] = [a.m(p, t), air(q, t)] = 0 (2.6) 

By substituting (2.3) and (2.4) in (2.2) and carrying out the integration, we find 

{2oL H = (l/2M) dp [p2 + (n27r2/L 2) 
m=0 

+ (m + ll2)Z]a*,.(p, t)a.,.(p, t) 

+ ~ ~ ~njB e dq dk F(p - q)a~m(q, t)a.m(p, t) 
n=O j=0 

LL + ~, (n2~r21L~) dq dp K(p - q)a*.(q, t)a~m(p, t) 
R ~ 0  

+ ~ ~ dq dp(qn + pj)Aj.G(p - q)a*m(q, t)a.m(p, t) (2.7) 
n=O j=0 

The quantities appearing in this expression for H are defined by 

= f ~  exp(ipz)[(dLldz)/L] z dz (2.8) F(p) 

G(p) = f~= p exp(ipz) log[L(z)/L,,] dz (2.9) 

= (~ exp(ipz){ l/[L(z)] 2 - l/[La] 2} dz (2.10) K(p) 



~ 0  R ~ a ~  

and 

B, , /= 2(-1)J+n(j  2 + n2)/['rrZ(j 2 - nZ)2]. 

B,,,, = (1/6) + l/(4n2'rr 2) 

A i. = ( -  1)J+"j/['rr(n 2 - j2)]. n ~ j 

n --P j (2.11) 

(2.12) 

(2.13) 

Ann = - 1/(4n-rr) (2.14) 

Since states with different quantum numbers m do not couple, we can write 
H as the sum 

H = ~ H,, (2.15) 
m = 0  

where H,. is the operator defined by the quantity in the curly brackets in 
(2.7). From this point on we suppress the index m and consider Hm for a 
fixed m value. 

3. E Q U A T I O N S  O F  M O T I O N  

In addition to the Hamiltonian H, there is a conserved quantity which 
is given by the expectation value of  the number operator N, 

N = ~ aT( p, t)aj(p, t) dp (3.1) 
./=0 

Using the commutation relation 

[a7 (p, t)aj(p, t), a~(q, t)an(r, t)] 

= a~(p ,  t)an(r, t)gikg( p - q) - a~(q, t)aj(p, t)Sjng(r - p) (3.2) 

we find that 

i(dNIdt) = [N, H] = 0 (3.3) 

But the number in each discrete j mode, i.e., 

Nj = f ~  a~(p,  t)aj(p, t) dp (3.4) 

does not remain constant, i.e., we have conversion from the continuous mode 
p to the discrete mode j and vice versa. The equation of motion for aj(p, t) 
is given by the Heisenberg equation 
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i[daj(p, t)/dt] = (l/2M)[p 2 + (j27r2/L2)]aj(p, t) 

+ (1/2M) .=o ~ f]= Fj,,(p, q)a.(q, t )dq  = 0 (3.5) 

where 

Fj.(p, q) = ( , j 2 " l r 2 [ L 2 ) ~ ) d n K ( p  - q) + "rrjnBj.F(p - q) 

- "rt(pn + qj)Aj~G(p - q) (3.6) 

The operator equation (3.5) is a linear differential equation for aj(p, t). By 
expanding a;(p, t) in terms of the Fourier integral 

t) = f e-ietaj(p" E)dE (3.7) aj(p, 

we find that aj(p, E) satisfies the equation 

[E - e(j, p)]aj(p, E) = - ( I /2M) ~ Fin(p, q)a.(q, E) dq (3.8) 
n=O 

where 

e(j, p) ---- (1/2M)[p 2 + (j27r2/L2)] (3.9) 

The expectation value of aj(p, E) 

(Olaj(p, E)[ lip) = ud( p, E) (3.10) 

also satisfies an equation similar to (3.8) and is the solution of the integral 
equation 

- e( j ,p)]uj(p,E)  = -(1/2M) ~ I ® Fj , (p ,q )u , (q ,E)dq  (3.11) [E 
n=0 

For a fixed E this equation shows that there are J open channels, where 

e(J, 0) < E < e(J + 1, 0) (3.12) 

Other channels will be closed. Physically this means that in the asymptotic 
limit as z ---) ___oc there are only J discrete modes for the incoming and 
outgoing particles. However, because of the coupling to other modes, there 
can be additional localized modes in the center of the waveguide. Let us 
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consider the specific case of  J = 1, which is coupled to other partial waves. 
For j = 1, we have 

u~(p, E) = ~ [ E -  ~(1, p)]  - 

2M(E - ~(1,p))  

1 L 2M(E - e(1, p)) 

and 

Fl l (p  - q)ul(q, E) dq 

where 

I~  F~j(p, q)uj(q, E) dq (3.13) 

(p2 + ~2)uj(p, E) = ~'k [ ~  Fjk(p, q)uk(q, E) dq, 

[3~ = (j2"rr2/LZa) - 2ME 

j >  1 (3.14) 

(3.15) 

Equations (3.13) and (3.14) are the single-particle wavefunctions in momen- 
tum space. To find an approximate solution to the set of coupled equations 
(3.13) and (3.14) we observe that ul(p, E) in the Born approximation can 
be written as 

ul(p, E) ~ ~{E - [Tr2/(2ML~a)] -p2 / (2M)}  = ~[(p2 _ et2)/2M] 

(3.16) 

where 

et 2 = 2M{E - [w2I(2ML])]} (3.17) 

Substituting (3.16) in (3.14), we find 

uj(p, E) ~-. [2M/(p 2 + t3~)][Fj~(p, a)  + FjI(p, - c 0 ] ,  j > 1 (3.18) 

From the definition of  F(p,  q), equation (3.6), we obtain 

uj(p, E) p2 +-------~j l cos(pz) cos(az) dz 

- Aj~ [(p2 _ a2j) cos(pz) cos(o~Z) 

} + p~( j  - 1) sin(pz) sin(az)] \ - -~ - ]  dz , j > 1 (3.19) 

These integrals converge if L(z) has the asymptotic behavior 

ln[L(z)lLal ~ O[(llz)nl, n --> 2 as z ~ ~ (3.20) 
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If this is the case, then 

[L-l(dL/dz)] 2 ~ O[(I/z)2n+l], z ~ ~ (3.21) 

and both integrals in (3.19) are finite. In general the second integral on the 
left side of  (3.19) is the dominant term. Also note that for large integer j ,  
B u ~ 2 ( -  1)J÷l(1/wj) 2, Alj ~ ( -  l)J÷l/'rrj, and [32 ~.j2; therefore the amplitude 
of  uj(p, E) for large j is smaller by a factor of ( l / j )  :. Thus only the first few 
modes, i.e., j = 2, 3 . . . . .  are important and the others have negligible 
amplitudes. 

As we mentioned earlier, the z dependence of the cross section of the 
waveguide is equivalent to the action of an external potential. This "fictitious" 
potential is nonseparable and depends on both y and z, but it does not couple 
the x degree of freedom with the y or z degrees of  freedom. Denoting this 
external potential by V(y, z), we can write the equation of  motion for aj(p, t) 
in the following way: 

i[daj(p, t)/dt] = ( l /2M)[p 2 + (j2rr2/LZ)]aj(p, t) 

+ ~ f= (j, pl VIn, q)a,(q, t)dq = 0  (3.22) 
n=0  

Comparing this with equation (3.5), we find 

(j, pl VIn, q) = (I/2M)Fj,(p,  q) (3.23) 

This relation can be inverted to find the potential as a function of  y and z. 
The results presented in this section are consistent with the findings of  
Andrews and Savage (1994). Using a coordinate transformation, these authors 
show that the motion of  a particle in a nonuniform waveguide is equivalent 
to the motion of  the same particle in a uniform waveguide but subject to a 
potential proportional to the eigenvalue. Here we have found a nonlocal 
potential which is equivalent to a local but energy- or velocity-dependent 
potential (Mott and Massey 1971). 

4. AN E X A M P L E  O F  L O C A L I Z E D  M O D E S  

Let us consider a waveguide where the cross section 2L(z) is given by 

2L(z) = 2 exp[5 exp(-z2/2)] (4.1) 

Here L~ = l, and the cross sections at both ends are the same. If the energy 
of each of the incident particles is in the range 

('tr2/2M) < E < (2'rr2/M) (4.2) 
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Fig. 1. Momentum-space wavefunction for the localized excitation in the waveguide u2(p) 
plotted as a function of p. 

then according to (3.12) only one channel  is open. In our  calculation we 
have chosen 

E = "rr2/M (4.3) 

Then ct = -rr and 13~ = (j2 _ 2),ha f o r j  > 1, Since 

e(1, 0) < E < e(2, 0) (4.4) 

only one transverse mode  j = 1 will be entering and leaving the waveguide.  

0 ' " " " " " " " " " " ' ~ " "  " . . . . . . .  

u3(P) 

-0.002 

-0.004 

-0.006 

-0.008 
. . . . . . . . . . . . .  , , t , , , , , 

-I0 -5 0 5 p i0 

Fig. 2. Same as in Fig. l, but for u3(p). Note that the amplitude of this wavefunction is 
smaller than u2(p). 
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Fig. 3. The wavefunction dd2(z), which is the Fourier transform of u2(p), shown as a function 
of z. This figure shows that the wavefunction is localized in the region where the cross section 
has a bulge. 

From (3.19) we find u2(p) and u3(p) as functions of  p. These are shown in 
Figs. 1 and 2. Both u2(p) and u3(p) have their maxima about p = __+'rr, or 
for p ~ _+or, where ot2/M is the energy E of  the incoming particle. This seems 
to be the property of  all of  the localized modes uj(p). The wavefunction in 
coordinate space is obtained from the Fourier transform of  uj(p). Since 

uj(p) = uj(-p)  (4.5) 

then 

~Oj(z) = Nj uj(p) cos(pz) dp (4.6) 

where N i is the normalization constant. The approximate wavefunction (not 
normalized) d~2(z) found from the approximate u2(p) is shown in Fig. 3. The 
z coordinate of  the peak of  this wavefunction coincides with the z value of  
the maximum cross section, and the wavefunction is localized within the 
bulge of  the waveguide. 

5. C O N C L U D ~ G  R E M A R K S  

In this paper we have shown how the formalism of second quantization 
can be applied to study the motion of  bosons in a waveguide with variable 
cross section. Exactly the same method can be used to discuss the flow of 
noninteracting fermions where similar equations are found• Another extension 
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of this work is to the problem of determination of the propagating modes in 
a waveguide where the cross sections at the two ends are finite but unequal, 
i.e., L(-oo) 4: L(~) (Szafer and Stone, 1989). For this case we observe that 
the last term in (2.7) must be replaced by 

i ~  ~ f ~ f ~  

where  

M(p) = f~_~ dz exp(ipz) [(dL/dz)/L] (5.1) 

Again assuming that L(z) tends to finite values as z ---> - ~  or z ---> 0% then 
[(dL/dz)/L] tends to zero at these limits, and if the rate of decrease of this 
quantity is fast enough so that (5.1) converges, then we have an equation of 
motion for the annihilation operator similar to (3.5). 

One of the advantages of the present formulation is that the resulting 
solutions reflect the symmetry of the problem. For instance, if L(z) = L(-z), 
as in the example of Section 4, then the localized modes are all symmetric 
(Figs. 1-3). Now in the coordinate-space formulation of the one-particle 
sector which is described by the Schrrdinger equation, one encounters stiff 
differential equations (Razavy, 1994). Due to the accumulation of the numeri- 
cal and roundoff errors of these equations the solution is not perfectly symmet- 
ric about z = 0. In addition, one can easily generalize the method presented 
here to the cases where the particles interact with each other as well as 
possibly interact with an external field. 
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